Regulation of backpropagating action potentials in mitral cell lateral dendrites by A-type potassium currents.
نویسندگان
چکیده
Dendrodendritic synapses, distributed along mitral cell lateral dendrites, provide powerful and extensive inhibition in the olfactory bulb. Activation of inhibition depends on effective penetration of action potentials into dendrites. Although action potentials backpropagate with remarkable fidelity in apical dendrites, this issue is controversial for lateral dendrites. We used paired somatic and dendritic recordings to measure action potentials in proximal dendritic segments (0-200 microm from soma) and action potential-generated calcium transients to monitor activity in distal dendritic segments (200-600 microm from soma). Somatically elicited action potentials were attenuated in proximal lateral dendrites. The attenuation was not due to impaired access resistance in dendrites or to basal synaptic activity. However, a single somatically elicited action potential was sufficient to evoke a calcium transient throughout the lateral dendrite, suggesting that action potentials reach distal dendritic compartments. Block of A-type potassium channels (I(A)) with 4-aminopyridine (10 mM) prevented action potential attenuation in direct recordings and significantly increased dendritic calcium transients, particularly in distal dendritic compartments. Our results suggest that I(A) may regulate inhibition in the olfactory bulb by controlling action potential amplitudes in lateral dendrites.
منابع مشابه
SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb.
Small-conductance calcium-activated potassium channels (SK) regulate dendritic excitability in many neurons. In the olfactory bulb, regulation of backpropagating action potentials and dendrodendritic inhibition depend on the dendritic excitability of mitral cells. We report here that SK channel currents are present in mitral cells but are not detectable in granule cells in the olfactory bulb. I...
متن کاملInhibition of backpropagating action potentials in mitral cell secondary dendrites.
The mammalian olfactory bulb is a geometrically organized signal-processing array that utilizes lateral inhibitory circuits to transform spatially patterned inputs. A major part of the lateral circuitry consists of extensively radiating secondary dendrites of mitral cells. These dendrites are bidirectional cables: they convey granule cell inhibitory input to the mitral soma, and they conduct ba...
متن کامل1 SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb
(BJM). We thank John Adelman for helpful discussions. ABSTRACT Small conductance calcium-activated potassium channels (SK) regulate dendritic excitability in many neurons. In the olfactory bulb, regulation of backpropagating action potentials and dendrodendritic inhibition depend on the dendritic excitability of mitral cells. We report here that SK channel currents are present in mitral cells, ...
متن کاملDeletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons.
Dendritic, backpropagating action potentials (bAPs) facilitate the induction of Hebbian long-term potentiation (LTP). Although bAPs in distal dendrites of hippocampal CA1 pyramidal neurons are attenuated when propagating from the soma, their amplitude can be increased greatly via downregulation of dendritic A-type K+ currents. The channels that underlie these currents thus may represent a key r...
متن کاملFunctional role of NMDA autoreceptors in olfactory mitral cells.
The output of the olfactory bulb is governed by the interaction of synaptic potentials with the intrinsic conductances of mitral cells. While mitral cells often are considered as simple relay neurons, conveying activity in olfactory receptor cells to the piriform cortex, there is strong physiological and behavioral evidence that local synaptic interactions within the olfactory bulb modulate mit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 5 شماره
صفحات -
تاریخ انتشار 2003